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ABSTRACT

Subseasonal probabilistic prediction of tropical cyclone (TC) genesis is investigated here usingmodels from

the Seasonal to Subseasonal (S2S) Prediction dataset. Forecasts are produced for basin-wide TC occurrence

at weekly temporal resolution. Forecast skill is measured using the Brier skill score relative to a seasonal

climatology that varies monthly through the TC season. Skill depends on models’ characteristics, lead time,

and ensemble prediction design. Most models show skill for week 1 (days 1–7), the period when initialization

is important. Among the six S2S models examined here, the European Centre for Medium-Range Weather

Forecasts (ECMWF)model has the best performance, with skill in theAtlantic, westernNorth Pacific, eastern

North Pacific, and South Pacific at week 2. Similarly, the Australian Bureau of Meteorology (BoM) model is

skillful in the western North Pacific, South Pacific, and across northern Australia at week 2. The Madden–

Julian oscillation (MJO) modulates observed TC genesis, and there is a relationship, across models and lead

times, between models’ skill scores and their ability to accurately represent the MJO and the MJO–TC re-

lation. Additionally, a model’s TC climatology also influences its performance in subseasonal prediction. The

dependence of the skill score on the simulated climatology, MJO, andMJO–TC relationship, however, varies

from one basin to another. Skill scores increase with the ensemble size, as found in previous weather and

seasonal prediction studies.

1. Introduction

The Madden–Julian oscillation (MJO; Madden and

Julian 1972) modulates tropical cyclone (TC) activity

globally. The probability of TC genesis is typically

greater during or after a strong convective MJO phase

than at other times (Camargo et al. 2009; Klotzbach

2014; Klotzbach and Oliver 2015a). In the Atlantic

(Mo 2000; Maloney and Hartmann 2000b; Klotzbach

2010; Klotzbach and Oliver 2015b), the enhanced storm

genesis occurs when a strongMJO is active in the Indian

Ocean. In contrast, in the eastern North Pacific, en-

hanced TC genesis occurs when a strongMJO is active in

the central and eastern North Pacific (Molinari et al.

1997; Maloney and Hartmann 2000a, 2001; Aiyyer and

Molinari 2008). Similarly, in the western North Pacific

(Nakazawa 1988; Liebmann et al. 1994; Sobel and

Maloney 2000; Kim et al. 2008; Li and Zhou 2013),Corresponding author: Chia-Ying Lee, clee@iri.columbia.edu
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North (Nakazawa 1988; Liebmann et al. 1994; Kikuchi

and Wang 2010; Krishnamohan et al. 2012) and South

(Bessafi and Wheeler 2006; Ho et al. 2006) Indian

Ocean, and South Pacific (Hall et al. 2001), the number

of storms increases when the MJO is active in these

basins. Additionally, typhoon tracks shift eastward

when the convective MJO is active in the Indian Ocean

and shift westward in the western Pacific (Kim et al.

2008). Rapidly intensifying storms are more frequent in

the Atlantic when theMJO is active in the IndianOcean

(Klotzbach 2012). A strong active MJO increases local

values of an empirical TC genesis index (Camargo et al.

2009) through systematic enhanced low-level absolute

vorticity and increased midlevel relative humidity.

In these observational studies, it is often stated that

accurate predictions of the MJO and knowledge of the

MJO–TC relationship offer the potential for forecasts

of the probability of TC genesis with a few weeks lead

time. Regional statistical models for subseasonal TC

prediction have in fact been developed (Leroy and

Wheeler 2008; Slade and Maloney 2013) using MJO

indices, as well as other environmental parameters.

When an MJO index is added as one of the predictors,

there is a significant, albeit small, improvement of skill

at leads up to 3 weeks. For longer leads, the forecast skill

is thought to be primarily from the climatological sea-

sonal cycle and interannual variability. Reforecasts from

the European Centre for Medium-Range Weather Fore-

casts (ECMWF) also suggest that the accuracy of the

MJOprediction has a significant impact on the predicted

TC frequency (Vitart 2009). Compared to Southern

Hemisphere TC statistical forecasts (Leroy andWheeler

2008), the ECMWFmodel has greater skill in predicting

TC occurrence at week 1, while the statistical model

performs better for longer leads (Vitart et al. 2010).

Furthermore, the ECMWF skill in predicting Atlantic

hurricane activity is sensitive to the MJO phase and

amplitude at the time of the model initialization

(Belanger et al. 2010).

With the increasing demand for forecasts on the time

scale between weather and seasonal–interannual—the

so-called subseasonal time scale—an international ef-

fort was initiated to improve and develop various as-

pects of dynamical subseasonal predictions, including

subseasonal TC forecasts. A key goal of these efforts is

improved understanding of the factors that affect fore-

cast prediction skill. The multimodel Seasonal to Sub-

seasonal Prediction (S2S; Vitart et al. 2017) dataset,

containing extensive reforecasts with lead times up to

60 days, is ideal for this task. In this study, we focus on

the subseasonal prediction of TC genesis in the S2S re-

forecasts. While the ability of global models to simulate

theMJO–TCmodulation (Vitart 2009; Satoh et al. 2012;

Kim et al. 2014; Murakami et al. 2015; Xiang et al. 2015)

and the prediction skill of TC genesis prediction on

subseasonal time scales have been analyzed (Belanger

et al. 2010; Elsberry et al. 2011; Tsai et al. 2013; Elsberry

et al. 2014; Nakano et al. 2015; Barnston et al. 2015;

Yamaguchi et al. 2015; Li et al. 2016; Camp et al. 2018)

for various models, this is the first comprehensive mul-

timodel, multiyear analysis of reforecasts of TC genesis

prediction on subseasonal time scales.

Here, we use the S2S data to construct probabilistic

and deterministic reforecasts of the of basin-wide TC

occurrence with weekly temporal resolution. The pre-

diction skill is evaluated using the mean square error

skill score and the Heidke skill score for deterministic

forecasts, as well as the Brier skill score for probabilistic

forecasts. Reforecasts, observations, skill scores, and

other analysis methods are described in section 2. We

then discuss TC climatology in the reforecasts in section

3 to define the tropical storm thresholds and seasonality

for prediction skill evaluation. The simulated and ob-

served MJO modulation of TC genesis is examined in

section 4. Then, we analyze the prediction skill as well as

the potential predictability in section 5. Connections

between the skill scores and the model characteristics,

the initialization, and the ensemble prediction system

design are examined in section 6. Results are then

summarized in section 7.

2. Data and methods

a. S2S reforecasts

Table 1 shows some basic characteristics of the S2S

reforecasts used here. They are obtained from coupled,

global general circulation models run by six operational

centers: the Australian Bureau of Meteorology (BoM),

the China Meteorological Administration (CMA), the

ECMWF, the JapanMeteorological Agency (JMA), the

Météo-France/Centre National de Recherche Météor-
ologiques (MetFr), and the National Centers for Envi-

ronmental Prediction (NCEP). The first ensemble

member is the unperturbed control run. Note that be-

cause the designs of the ensemble prediction systems

(specifically, the frequency of forecasts and ensemble

size) differ among these agencies, the reforecasts are

heterogeneous. We treat such differences in system de-

sign as additional factors contributing to prediction skill.

Another heterogeneous feature is that the reforecast

periods differ. While this might affect the comparison,

we do not think it is likely to qualitatively change the

relative skill of the forecast systems. Further details of

the S2S dataset are described by Vitart et al. (2017). All

the S2S reforecasts are archived on a 1.58 3 1.58 grid at

daily resolution.
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b. TCs in the S2S models and observations

To track TCs in the S2S models, we employ the

tracker from Vitart and Stockdale (2001). The tracker

defines a storm center at a local minimum sea level

pressure where 1) a local vorticity maximum (.3.5 3
1025 s21) at 850hPa is nearby, 2) a local maximum in the

vertically averaged temperature (warm core,.0.58C) in
between 250 and 500hPa is within a distance (in any

direction) equivalent to 28 latitude, 3) the two locations

detected from criteria 1 and 2 above are within a dis-

tance equivalent to 88 latitude, and 4) a local maximum

thickness between 1000 and 200 hPa can be identified

within a distance equivalent to 28 latitude. Additionally,

a detected storm must last at least 2 days to be included

in our analysis.

In general, the criteria used in a tracker should vary

withmodel resolution (Walsh et al. 2007; Camargo 2013).

TC detection, however, is very sensitive to the input

thresholds (Horn et al. 2014; Zarzycki and Ullrich 2017);

changing criteria without a thorough investigation could

potentially introduce artifacts into the results. Further-

more, all the S2S data are archived on a common grid.

Therefore, in this study, we use the same criteria (as de-

scribed above) for all models. A potential impact due to

the interpolation of the atmospheric fields from a high-

resolutionmodel output to a low-resolution common grid

is that it might reduce the strength of the warm core, the

vorticity, and the pressure. The vorticity might be most

strongly affected. Because the criteria used here were set

for a low-resolution model, the impact on the weakening

of these fields is not expected to affect the number of the

detected TCs. The S2S TC tracks contain daily values of

maximum sustained winds and storm locations.

Observations of tropical cyclone tracks are derived

from the HURDAT2 dataset, produced by the Na-

tional Hurricane Center (NHC; Landsea and Franklin

2013) and from the Joint Typhoon Warning Center

(JTWC; Chu et al. 2002). Both best-track datasets in-

clude 1-min maximum sustained wind, minimum sea

level pressure (not used in this study), and storm loca-

tion every 6 h.

Following the conventional definitions, the TC basins

are the Atlantic (ATL), northern Indian Ocean (NI),

western North Pacific (WNP), eastern North Pacific

(ENP), southern IndianOcean (SIN, 08–908E), northern
Australia (AUS, 908–1608E), and southern Pacific (SPC,

east of 1608E).

c. MJO definition

The real-time multivariate MJO indices (RMM1 and

RMM2) are calculated using zonal winds at 200 and

850 hPa and outgoing longwave radiation (Gottschalck

et al. 2010; Wheeler and Hendon 2004; Vitart 2017).

Observational RMM indices are calculated using ERA-

Interim reanalysis data.

d. Skill scores

A skill score is an index that measures the model pre-

diction skill relative to a reference value. Three skill

scores are used here:mean-square error (MSE) skill score

(MSESS), Heidke skill score (HSS), and Brier skill score

(BSS). MSESS and HSS are for evaluating deterministic

forecasts while BSS is for probabilistic predictions.

MSESS is applied to the predicted storm numbers

and is defined as

MSE5
1

N
�
N

i51

(P
i
2O

i
)2 and (1)

MSESS5 12
MSE

MSE
ref

, (2)

where N is the total number of forecasts, Pi is the pre-

dicted genesis number for the ith forecast, and Oi is the

ith observation. MSEref is the MSE of a reference based

on observed climatology. MSESS larger than 0 means

the model has higher skill than the climatological

reference.

HSS compares the proportion of correct categorical

forecasts to that which would be expected by random

forecasts that are statistically independent of the observa-

tions.We use two categories here: 0 for no genesis and 1 for

one ormore storms forming during the forecast period. The

TABLE 1. Characteristics of the six S2S reforecasts used in this paper.

Model Forecast time (days) Resolution Period Ensemble size

Frequency and

sample size

BoM 0–64 28, L17 1981–2013 33 ;5 days, 2160

CMA 0–61 18, L40 1994–2014 4 Daily, 7665

ECMWF 0–46 0.258 for first 10 days;

0.58 after day 10, L91

1994–2014 11 ;4 days, 2058

JMA 0–33 0.58, L60 1981–2010 5 ;10 days, 1079

MetFr 0–61 ;0.78, L91 1993–2014 15 ;15 days, 528

NCEP 0–44 ;18, L64 1999–2010 4 Daily, 4380
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ratio of the number of correct forecasts to that of all fore-

casts, commonly called percent correct (PC), is defined as

PC5
a1 d

a1 b1 c1 d
5

a1 d

n
, (3)

where a represents the frequency of observed geneses

that are correctly forecast, b is the frequency of false

alarms, c represents the observed geneses that are not

forecast, and d are cases that were neither forecast nor

occurred.

The marginal probability of a 1 forecast is (a1b)/n and

that for a 1 observation is (a1 c)/n. Thus, the probability

of a correct 1 forecast by chance is (a1 b)/n3 (a1 c)/n.

Similarly, the probability of having a correct 0 forecast by

chance is (b1 d)/n3 (c1 d)/n. Thus, the probability E

of a correct forecast due to chance is

E5

�
a1 d

n

��
a1 c

n

�
1

�
b1 d

n

��
c1 d

n

�
. (4)

HSS is therefore defined as

HSS5
PC2E

12E
5

2(ad2 bc)

(a1 c)(c1 d)1 (a1 b)(b1 d)
.

(5)

The HHS is 1 if all forecasts were correct (i.e., when

PC equals 1) and is 0 if the model has no skill (i.e., PC

equals E).

BSS is used to assess the skill of a probabilistic fore-

cast of basin-wide TC occurrence relative to a climato-

logical forecast. The Brier skill (BS) is defined as

BS5
1

N
�
N

i51

(p
i
2 o

i
)2 and (6)

BSS5 12
BS

BS
ref

, (7)

where N is the total number of forecasts, oi is the ith

observation, and pi is the predicted probability of TC

occurrence for the ith forecast, defined as

p
i
5

1

M
�
M

j51

P
i,j
. (8)

In Eq. (8), M is the number of ensembles, Pi,j is the

genesis prediction from the jth ensemblemember for the

ith forecast. BothPi,j and oi are 0 for no genesis and are 1

for one or more occurrences of storm genesis during the

forecast period. Thus, BS is the mean-square probability

forecast error. The BSref is similar to BS but for a ref-

erence forecast based on the observed climatology. In

this study, two climatologies are used. One is the sea-

sonally varying climatology at a monthly time resolu-

tion, while the other is a constant, annual mean

climatology. When a model is skillful compared to the

climatology, the BSS is positive.

e. Candy plot analysis

To analyze the dependence of TC genesis on MJO

phases, the probability density function (PDF) of storm

genesis is calculated in each TC basin and binned by

MJO phase. To identify favorable and unfavorableMJO

phases, values of the TC number in each week are ran-

domly shuffled in time throughout the entire period to

obtain PDFs independent of the MJO. The favorable

MJO phases are then defined when the unshuffled PDF

is larger than the 90th percentile of the 4000 PDFs ob-

tained from randomly swapping the data, and the un-

favorable MJO phases are defined when the unshuffled

PDF is less than the 10th percentile of the randomized

PDFs. The PDFs are then organized by the longitude

along the Y axis from ATL to ENP and by the MJO

phases along the X axis, like a sheet of candies.

The candy plot analysis is conducted for observations

and the six S2S models. The comparison of the global

pattern (consisting of PDFs from all TC basins) between

each S2S model and the observed pattern is then quan-

tified using r2 (i.e., the fraction of the variance of the

observed PDFs that is predicted by the model PDFs). In

this analysis, we include only storms when the magni-

tude of the MJO index is larger than one standard de-

viation. The fractions of storms we used are 60% in the

observations, and roughly 60%, 50%, 40%, 52%, 65%,

and 52% in BoM, CMA, ECMWF, JMA, MetFr, and

NCEP reforecasts, respectively.

3. Tropical cyclone climatology

a. Intensity and tropical storm threshold

Since their horizontal resolutions are inadequate to

represent the TC inner-core structure, the global models

used here are not able to simulate the highest observed

TC intensities. Another factor that impacts the simu-

lated intensities as represented in the S2S archive is that

the model outputs are instantaneously archived on a

1.58 3 1.58 grid in the S2S database every 24 h. As a

result, the cumulative density distribution (CDF) of

TCs’ lifetime maximum intensity (LMI) shows that the me-

dianLMI for the observed storms is 50 kt (1 kt5 0.51ms21)

while it is in the range of 25–35 kt for the S2S models,

except for BoM, which has a median LMI of 40 kt

(Fig. 1). The BoM model is able to simulate stronger

storms than other S2S models that have higher hori-

zontal resolutions. This could be due to its physical
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parameterizations, dynamical cores, or both. Multiple

studies with other global climate models have noted that

both factors are important, so that the maximum TC

intensities simulated by a model are not a simple func-

tion of that model’s horizontal resolution (Vitart et al.

2001; Murakami et al. 2012; Zhao et al. 2012; Reed et al.

2015; Duvel et al. 2017; Kim et al. 2018). Although there

is a significant low bias in the S2S TC intensities, we can

categorize storms using quantile analysis (Camargo and

Barnston 2009). For example, the observed tropical

storm (TS) wind speed threshold is 34 kt, which in the

observed LMI distribution corresponds to the 18th

percentile (gray line in Fig. 1). Thus, we define the

tropical storm threshold as the 18th percentile of the

LMICDF in eachmodel. These are 34, 23, 24, 24, 27, and

26 kt, respectively, for the BoM, CMA, ECMWF, JMA,

MetFr, and NCEP models. In this study, we only con-

sider TCs that reach the tropical storm threshold thus

defined in observations and the model reforecasts.

b. Genesis and TC season definition

Genesis time is defined here as the time of the first

point recorded on each forecast track. TCs that exist

prior to the model initialization time have already un-

dergone genesis. Nevertheless, for purposes of model

evaluation, we refer to the first recording time (usually

day 1, or t 5 24 h) of the preexisting storms as their

genesis time. The reason for including preexisting

storms in our analysis will be discussed in section 5.With

the exception of week 1—when there is a higher TC

occurrence because of the preexisting storms—the

forecast genesis climatology does not change much with

lead time. Therefore, while we only show here the

genesis climatology for week 2 forecasts (Fig. 2), our

results are also valid at longer lead times.

Globally, the ECMWF model that is statistically signif-

icant generates 20%moreTCs thanobserved,whileCMA,

MetFr, and NCEP have genesis rates 140%, 65%, and

80% higher than observed, respectively. In contrast, the

BoM and JMAmodels generate 35% and 45% fewer TCs

than are present in the observed climatology. Low-

resolution models often have unrealistically high TC gen-

esis rates in the subtropics, when storms are detected and

trackedusing algorithmswithmodel-dependent thresholds

(Camargo 2013). However, the difference maps be-

tween simulated and observed genesis counts

(Figs. 2b–g) suggest that this is not the case for the S2S

models, since the errors in the subtropics are much

smaller than those in the tropical belt (308S–308N).

Regionally, the strongest observed local maxima of

the TC genesis rate occur in the ENP andWNP (Fig. 2a).

In the three Southern Hemisphere basins (SIN, AUS,

and SPC), the observed storms form in an elongated

area around 158S. In general, the S2S models are able

to capture these local maxima (not shown), and the

ECMWF model has the smallest regional biases, fol-

lowed by the BoM model. The JMA model underesti-

mates the rate of TC genesis everywhere, while CMA,

MetFr, and NCEP overestimate it. In the individual

basins, the models that have the smallest mean bias (in

number of storms per year) are the MetFr model

(20.01) for the ATL, the BoM (0.22) for the NI, the

ECMWF (0.11) for the WNP, the MetFr (20.24) for the

ENP, the JMA (20.3) for the SIN, the BoM (20.6) for

the AUS, and both the ECMWF (0.33) and BoM (0.36)

for the SPC. The CMA model has the largest positive

bias in the Pacific Ocean (Fig. 2c), with more than 1

storm per year per grid (48 3 48) between 48 and 128N,

compared to the observed climatological mean of less

than 0.2 storms per year per grid (Fig. 2a).

Despite these biases in the total TC counts and genesis

spatial distribution, the S2S models represent the annual

cycle of TC genesis reasonably well (Fig. 3). We define

regionally varying TC seasons that consist of the months

with genesis rates higher than 5% of the annual genesis

rate in each region. Using this definition, the TC seasons in

somemodels are slightly different than in the observations.

For example, the observed hurricane season in the ENP is

defined as May–October, but it is from July to December

in the BoM model. The simulated TC seasons in the

ECMWF model best match those from the observations.

Although there are differences between simulated

and observed TC seasons, our goal is to have skillful TC

predictions during the observed TC seasons. Therefore,

the observed TC seasons are used in our prediction skill

evaluation below. Using this definition, the TC seasons

are June–November in the ATL, May–October in the

ENP, May–December in the WNP, April–June and

September–December in the NI, October–April in the

SIN, and November–April in the AUS and SPC.

FIG. 1. CDFs (%) of the observed (black) and the simulated

(colored) LMIs from each of the ensemble members from the six

S2S models.
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4. MJO–TC modulation

Next, we examine whether the S2S models are capable

of simulating the observed MJO–TC modulation. Spe-

cifically, we refer to the spatial distribution of genesis as a

function of the MJO phase, such as the anomalous fields

in Figs. 4 and 5, and the basin-wide PDFs in Fig. 6. Our

focus is on the week 2 reforecasts, when all S2S models

show skill in predicting the MJO (Vitart 2017).

Global climate models are able to simulate the

observed dependence of TC genesis on the MJO

(Nakazawa 1988; Liebmann et al. 1994; Mo 2000;

Maloney and Hartmann 2000b,a; Kim et al. 2008; Li and

Zhou 2013; Krishnamohan et al. 2012; Bessafi and

Wheeler 2006). High horizontal resolution is often cited

as a necessary condition to capture the MJO–TC mod-

ulation (e.g., Zhang 2013; Camargo and Wing 2016).

However, the necessary resolution is not precisely

defined. For example, the high horizontal resolution

Zhang (2013) and Camargo andWing (2016) referred to

varies from 50 km for the EMCWF (Vitart 2009) and the

Geophysical Fluid Dynamics Laboratory (GFDL) High

FIG. 2. (a) The observed genesis density in storm numbers per 48 3 48 per year. (b)–(g) Week 2 ensemble mean

genesis density biases in the BoM, CMA,ECMWF, JMA,MetFr, andNCEPmodels. The black dots indicate where

the error is larger than one standard deviation of the natural variability.
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Resolution Atmospheric Model (HiRAM; Jiang et al.

2012) to 14 km for the Japanese Nonhydrostatic Icosa-

hedral Atmospheric Model (NICAM; Oouchi et al.

2009). Furthermore, good representations of convection

and microphysics are key elements in order to simulate

well the MJO in global models (Kim et al. 2012, 2014;

Holloway et al. 2013; Kang et al. 2016). Changing the

horizontal resolution (with the same physical packages

for the same model) does not necessarily improve the

MJO simulation (Jia et al. 2008; Holloway et al. 2013;

Hung et al. 2013). Horizontal resolution might be im-

portant primarily through its influence on the models’

ability to simulate TCs and their interaction with the

ambient environment (Kim et al. 2018).

FIG. 3. Observed (black) and simulated (colored) ensemble mean seasonality (%). At each basin, the months

when the genesis rate is larger than 5% (gray dashed lines) of the observed annual genesis rate are defined as the

TC season.
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The S2S models have horizontal grid spacings from

0.258 to 28. All of them are able to capture, at least

qualitatively, the observed eastward propagation of TC

genesis anomalies in the Southern Hemisphere with

increasing MJO phase (Fig. 4). While the observed

eastward-propagating signal is weaker in the Northern

Hemisphere (Fig. 5), we can still see positive TC genesis

anomalies propagating from the NI to the ATL (i.e.,

from MJO phases 2–3 to 8–1). The Northern Hemi-

sphere eastward propagation is stronger in most of the

S2S models than in the observations. The observed

positive anomalies in the ENP for MJO phases 6 and 7

are too strong and expand toward the WNP for the

ECMWF and MetFr models. Similarly, the WNP

anomalies for MJO phases 8–1 are overpredicted and

expand toward the ENP for the BoM, CMA, ECMWF,

and NCEP models. The JMA model is not able to cap-

ture the MJO eastward propagation in the Northern

Hemisphere.

To further identify the MJO phases that are favor-

able for TC genesis in individual basins, we perform a

candy plot analysis (section 2), which shows the storm

genesis rate binned by MJO phase in each TC basin. In

the observations (Fig. 6a), 31% of observed ATL

hurricanes form when the MJO convection center is in

the Indian Ocean (MJO phases 2–3). Similarly, in the

SIN, a higher rate of genesis (50% of all storms) occurs

during theMJO phases 2–3. The favorableMJO phases

FIG. 4. Ensemblemean genesis anomalies (%) at every twoMJO phases from 2–3, 4–5, 6–7, and 8–1 in the SouthernHemisphere from the

observations and the week 2 forecasts from six S2S models.

974 WEATHER AND FORECAST ING VOLUME 33

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/01/21 09:13 PM UTC



for TC occurrence are 3–5 for the NI, 3–4 for the AUS,

5–6, for the WNP, 7–8 for SPC, and 7 and 8–1 for the

ENP. The favorable MJO phases are listed by basin

with increasing longitudes so that they line up from the

bottom-left corner to top-right corner in Fig. 6a.

The favorable MJO phases in the S2S models also

show a bottom-left to top-right trend, with the exception

of the JMA model. The ECMWF model (with hori-

zontal resolutions of 0.258–0.58) best simulates the ob-

servedMJO–TCpattern (Fig. 6b), and explains 64% (r2)

of the observed variance. TheMetFr, NCEP, CMA, and

BoM models (in order of model resolution from 0.78 to
18) explain 42%, 50%, 41%, and 47% of the variance,

respectively. The JMA model does not capture the up-

ward trend of the MJO–TC pattern, because MJO

phases 5 and 6 occur muchmore frequently in the model

than in the observations, especially during the Northern

Hemisphere TC seasons (Fig. 6e). As a result, despite

having 0.58 horizontal grid spacing, the JMA model ex-

plains only 23% of the observed MJO–TC relationship.

Our results suggest that while model resolution plays an

important role in simulating TCs, it is probably not the

most important factor for simulating the observed

modulation of TC genesis by the MJO.

5. Genesis forecast skill

On the scale of weather forecasting (2–5 days), de-

terministic prediction of TC occurrence is often used.

Beyond 5 days, probabilistic forecasts from ensemble

FIG. 5. As in Fig. 4, but for the Northern Hemisphere.
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systems are used because they provide information on

the uncertainty of the forecasts (Elsberry et al. 2014).

Furthermore, the prediction skill from the mean of an

ensemble might be higher than that of a single

‘‘deterministic’’ run even if the latter has higher res-

olution. In this section, we will show the models’ skill

in predicting TC genesis in both deterministic and

probabilistic forecasts. Our focus is the probabilistic

FIG. 6. Candy plot for the MJO–TC relationship in the observations and from six S2S models from week 2

forecasts. The color of each candy indicates the PDF (%) in the correspondingMJO phase in the basin. The sum of

the circles across theMJO phases in each basin is 100%. The black circle at the edge indicates the value is above the

90th percentile while the cross symbol (3) at the center means the value is below the 10th percentile. In the title of

each subplot from the simulations, we label the r2 value, which represents the fraction of the observed pattern

explained by the model simulation.
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prediction skill, and we will also discuss its potential

predictability.

a. Deterministic prediction: MSESS and HSS

The deterministic TC occurrence prediction is defined

using the ensemble mean forecasts here. The deter-

ministic prediction skill is quantified using MSESS and

HSS (section 2). HSS measures the S2S models’ ability

to forecast storm occurrence (regardless of number)

while MSESS evaluates not only occurrence but also the

number of the storms.

Comparing to the random predictions, the S2S

models are more skillful at predicting storm occurrence

within a basin at most leads (Fig. 7). For week 1 oc-

currence prediction, the ECMWF model has the

highest values of the HSS in all basins except in the

ATL basin where the NCEP model has higher HSS.

After week 1, the values of HSS in most of the models

drop significantly, and it is hard to distinguish among

them. Note that HSS compares the ratio of correct

forecasts from the S2S models to that expected by

chance, without taking into account the climatology.

The values of HSS alone do not tell if the S2S models

are more skillful than climatology.

Therefore, we create a no-skill reference forecast that

shows the skill score from knowing only the seasonal

climatology (dashed line in Fig. 7). The no-skill refer-

ence is calculated by verifying the S2S predictions

against observations that are shuffled by year. For ex-

ample, the S2S predictions from 2005 are evaluated us-

ing observations from a randomly selected year. Doing

so, we keep the seasonality in the shuffled observations

but remove the year-to-year dependence. With a few

exceptions, the HSS values of the no-skill references are

positive. This is because the S2S models simulate the

observed genesis seasonality reasonably well, as we

discussed earlier in the section 3. In the cases when the

value of the model HSS is close to the no-skill reference,

the climatology contributes to most of the prediction

skill. In Fig. 7, the solid lines merge to the dashed lines

for most of the models after week 2, except for the

ECMWF model. For the BoM and CMA models in the

Atlantic basin, even the week 1 prediction skill is largely

due to knowing the seasonal climatology. In the

ECMWF model, the HSS is larger in all basins than the

corresponding no-skill reference, indicating that there

are additional factors that contribute to the determin-

istic prediction skill.

Analyses using MSESS suggest that the S2S models

are not skillful at predicting TC frequency except for

week 1 forecasts from the ECMWF model in the NI,

AUS, WNP, and ENP and from the BoM model in the

SPC and AUS (not shown).

b. Probabilistic prediction: BSS

Next, we investigate the performance of the S2S

models in predicting the probability of weekly TC oc-

currence. Two different Brier skill scores are calculated

here. The first (called BSS_c, where ‘‘c’’ stand for

‘‘constant’’; dashed lines in Fig. 8) compares the Brier

score of the forecast to that of a constant, the observed

annual mean climatology. Positive values of BSS_c

mean that the model is more skillful than a constant

climatological prediction. We consider storms with

geneses in all months, and with this score, forecasts re-

ceive credit for correctly matching the annual cycle in

TC genesis frequency. This is consistent with standard

practice in the verification of short-term weather fore-

casts, in which the total values of meteorological var-

iables, as opposed to anomalies from a seasonal

climatology, are verified against observations.

The second Brier skill score (called BSS without a

subscript here; solid lines in Fig. 8) compares the Brier

skill of the forecasts to that of an observed monthly

varying climatology. In this case, only storms that

formed during the observed TC seasons are considered

(as defined in section 3). This is more typical in seasonal

predictions and provides a stricter measure for evalu-

ating TC genesis prediction skill. S2S models achieve

positive BSS values when they capture deviations from

the observed seasonality. A positive BSS in this case

means that the model is more skillful than the monthly

varying climatological prediction.

The values of BSS_c are often positive, indicating that

S2S models are more skillful than an annually constant

forecast in most of the TC basins. The BSS_c values are

also often noticeably greater than those of BSS because

the reference forecast used for BSS_c is less skillful

than that of BSS. Forecasts from the CMA and those for

the NI are exceptions. In the CMA forecasts, the values

of BSS_c are much closer to those of BSS in SIN, AUS,

and WNP. This is because the CMA model’s climatol-

ogy is poor, with too many storms forming during the

observed off season (Fig. 3). The differences between

BSS_c and BSS in the NI are much smaller than in other

basins, and there are no positive BSS_c values after

week 1. In other words, none of the S2Smodels hasmore

skill in predicting the TC season than an annually con-

stant forecast after week 1 in the NI. In contrast, JMA,

ECMWF, NCEP, and MetFr all have positive BSS_c in

the ATL up to week 5, although ECMWF is the only

model that has a positive BSS after week 1.

The BSS values for all models drop significantly from

week 1 to week 2 (Fig. 8), similar to results shown for

HSS (Fig. 7). This large drop is connected to our genesis

definition by accounting for preexisting storms at the
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FIG. 7. Weekly, basin-wide HSS (solid lines) and the no-skill references (dashed lines) in the S2S model.
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FIG. 8. Weekly, basin-wide BSSs in the S2S model relative to the constant (dashed lines) and to the monthly

varying climatological (solid) predictions. The triangle markers indicate the BSS values without preexisting

storms.
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time of model initialization, which leads to a high asso-

ciation between forecasts and observations (therefore

high BSS). Without including preexisting TCs,1 the

week 1 BSS values (the triangle markers in Fig. 8) are

close to but (most of them) still slightly higher than those

at week 2. By keeping the preexisting storms, we ac-

knowledge that initialization is one of the factors con-

tributing to a dynamical model’s prediction skill. Most

S2S models are skillful at week 1 in most basins, with the

exception of the NI. Low or even negative week 1 BSS

values in a basin are related to poor model initialization

in those regions. From weeks 2 to 5, most models’ BSS

values level off, with the forecast errors saturating at

week 2. This is consistent with the fact that the genesis

climatology does not vary significantly after week 2. In

some cases, such as for the ECMWF model in the SPC

and the NCEP model in the NI, the model error con-

tinues to grow and therefore the BSS values decrease

with increasing lead time. TheMetFr’s BSS values in the

SIN and NI fluctuate, with relatively higher values dur-

ing weeks 3 and 5 than in weeks 2 and 4. We speculate

that these fluctuations are not meaningful but result

from inadequate sample size.

Based on the BSS evaluation, the ECMWF model

has skill up to week 5 in predicting TC occurrence in

the ATL and WNP, up to week 2 in the SPC and ENP,

but has no skill in the SIN, NI, and AUS after week 1.

The BoM model has positive skill in the WNP up to

week 5 and in the SPC up to week 2. The MetFr model

is skillful up to week 2 in the WNP. The CMA, JMA,

and NCEP models have no skill after week 1. Com-

pared to the existing basin-wide statistical models

(Leroy and Wheeler 2008; Slade and Maloney 2013),2

the ECMWF,BoM, andMetFrmodels have comparable

prediction skill. At week 1, the BSSs from these multiple

logistic regression models are 0.13 and 0.17 in the ATL

and ENP (Slade and Maloney 2013), 0.09 in the SIN,

0.06–0.08 near AUS, and 0.045 in the SPC (Leroy and

Wheeler 2008). The highest S2S BSS values (from

ECMWF) at week 1 are 0.7 in theATL,WNP, and ENP;

0.35 in the AUS; 0.25 in the SPC; 0.25 in the SIN; and

0.06 in the NI. (Without considering the preexisting

storms, they are 0.127, 0.36, and 0.27 in the ATL, WNP,

and ENP, respectively; 0.126 in the AUS; 0.07 in the SIN

and NI; and 0.01 in the SPC.) At week 2, the statistical

models have BSS values of 0.11 and 0.16 in the ATL

and ENP (Slade and Maloney 2013), 0.07 in the SIN,

0.05–0.07 near AUS, and 0.001 in the SPC (Leroy and

Wheeler 2008). The highest S2S BSS values at the same

lead time are 0.15 in the ATL, 0.19 in the WNP, 0.105 in

the ENP (from ECMWF), 0.056 in the SPC, and 0.08 in

the AUS (from BoM). None of the S2S models has

positive skill in the SIN and NI at week 2. From week 3,

the BSS values from the statistical models are overall

better than those from the S2S models.

c. Potential predictability

The BSS values are low for weeks 2–5 in all global

basins, even for those models that are skillful (with BSS

above zero in Fig. 8). This raises the question of what

are the upper limits of the subseasonal TC genesis

prediction in these S2S models. We estimate these

limits by computing potential predictability (Buizza

1997).3 For each of the S2S models, reforecasts from

one of the ensemble members are treated as a fake

‘‘observation,’’ to which predictions from the rest of

the members are verified against using the Brier Skill

score (the same as was used for calculating the actual

skill). This process is repeated for each ensemble

member, and then we average the skill scores. Re-

placing the observations with a model forecast renders

the model ‘‘perfect’’ in that the representation of the

atmosphere in the forecast and in the target being

forecast then are identical, without any systematic

biases. The sources of the errors that remain are the

uncertainties in the initial conditions and the un-

predictable noise within the model.

Commonly, but not always (Kumar et al. 2014), the

potential skill is larger than the actual skill. With the

perfect observational data, sufficient ensemble spread,

and unbiased models, the positive difference between

the potential and actual skill levels can be interpreted as

an indication of room for improvement in the models.

Under the imperfect situation with possible errors in

the observational data, insufficient ensemble spread,

and models with systematic biases, the positive

1A preexisting TC is defined when the storm is identified by the

tracker on day 1 with intensity greater than the respective TS

threshold and when there is an observed storm greater than 34 kt

(the TS threshold for observations) within 500-km distance of the

simulated storm.
2While the mathematical formulas in the statistical models are

similar from one basin to another, the predictors and how sensitive

they are varies. Leroy andWheeler (2008) focused on the southern

oceans and used twoMJO indices, the ENSO SST index, the Indo-

Pacific SST, and the regional TC seasonal climatology. Slade and

Maloney (2013), who focused on the Atlantic and east Pacific ba-

sins, used MJO and ENSO indices, as well as a regional genesis

climatology. For the Atlantic basin, an additional predictor rep-

resenting the variability of SST in the main development region is

used.We do not distinguish between the different statistical models

in our discussions but refer the interested reader to those studies.

3 The potential predictability discussed here is model dependent,

not the intrinsic potential predictability of TC genesis.
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difference can be a consequence of these deficiencies.

Observational errors lead to artificially low actual skill

while insufficient ensemble spread and a biased model

can result in artificially high potential skill (Wheeler

et al. 2017).

The potential skill score used here is called BSS_p,

where the ‘‘p’’ stands for ‘‘potential.’’ As an example,

Fig. 9 shows the BSS_p results (dashed lines) of the

BoM, ECMWF, and NCEPmodels in theATL and SIN.

The S2S models perform relatively better in the ATL

than in other basins while the SIN is one of the more

challenging basins. Similar to BSS, the values of BSS_p

(dashed lines) drop significantly after week 1 and level

off from weeks 2 to 5. The BSS_p values are positive

everywhere for all S2S models at all leads (not shown).

The differences between the BSS_p and the BSS (the

gap between the dashed and the solid lines in Fig. 9) vary

with lead time, basin, and model. They are usually

smallest at week 1, indicating a positive contribution

from the initialization. The differences are largest in the

NCEP model when compared to those in the ECMWF

and BoM. In addition to having low actual skill, the

FIG. 9. Weekly, basin-wide BSS (solid) and the potential predictability (BSS_p; dashed) for the ATL and SIN

basins from theBoM,ECMWF, andNCEPmodels. The grayish lines are theBSSswith data binned by the observed

MJO magnitude at the time of initialization.
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NCEPmodel has only four members, which might result

in insufficient ensemble spread, and therefore artificially

high BSS_p. In the three Southern Hemisphere TC ba-

sins (figures for SPC and AUS are not shown), the BoM

model’s actual skill is close to the respective potential

one. The values of BSS are closer to those of BSS_p in

the ECMWF model in the ATL. Across models, the

positive differences between BSS_p and BSS are largest

in the CMA, and smallest in the ECMWF (not shown).

Similar to the NCEP, CMA has both low actual skill and

only four ensemblemembers.While there is no easy way

to definitely explain the gap between potential and ac-

tual skill levels, large differences suggest deficiencies in

the model, the ensemble system, or the data.

6. Discussion of the source of probabilistic
prediction predictability

The ability of global models to represent TC genesis

depends on the model characteristics, including the dy-

namical core (Reed et al. 2015; Vitart et al. 2001; Kim

et al. 2018), the physical parameterizations (Reed and

Jablonowski 2011), and the model resolution (Kajikawa

et al. 2016). These characteristics are responsible for

how well the genesis climatology, the MJO, and the in-

teraction between the MJO and TCs (or interactions

between two weather systems in general) are repre-

sented in the model. A good TC forecast (at least on

weather scales) strongly relies on the model initializa-

tion (i.e., the data assimilation scheme). Additionally,

the skill of the ensemble prediction system is sensitive

to the design of the forecast, such as the ensemble size and

the range of the model spread—topics that have been

broadly studied within the context of weather (Wilson

et al. 1999; Richardson 2001), seasonal (Brankovic and

Palmer 1997; Deque 1997; Kumar et al. 2001; Kumar and

Chen 2015), and decadal (Sienz et al. 2016) predictions. In

this section, we discuss the impact of the model charac-

teristics, initialization, and the ensemble size on the sub-

seasonal genesis probabilistic prediction skill.

a. BSS and climatology, MJO, and MJO–TC
relationship

To examine how a model’s TC genesis prediction skill

is influenced by its representation of the observed TC

climatology, the MJO, and the MJO–TC relationship,

we compute the correlation, across lead times and

models, between the BSS values (from Fig. 8) and the

three verification indices, which are 1) the correlation of

the basin-wide, monthly, genesis frequency between

simulations and observations for TC climatology, 2) the

bivariate correlation of RMM indices for rating the

models’ performance on the MJO [same as those shown

in Vitart (2017)], and 3) the fraction of variance r2 of

the observed MJO–TC relationship explained by the

models from the candy plot analysis (Fig. 6). The cor-

relations are calculated using data from weeks 1 to 5

(rw125), as well as from weeks 2 to 5 (rw225), with the

latter excluding the influence of the initialization on

these measures.

Figure 10 shows the scatterplots of BSS and these

three verification indices in the ATL. The BSS values

are positively correlated with the verification indices for

the TC climatology, the MJO, and the MJO–TC rela-

tionship from weeks 1 to 5 (rw125). The positive corre-

lation can be partially attributed to the dependence of

both quantities on the lead time; the week 1 BSS and the

measure of week 1 genesis climatology (or of MJO and

of theMJO–TC relationship) are both higher than those

at week 2. Using data from weeks 2 to 5, the positive

correlations remain, and the correlation coefficient

(rw225) becomes smaller, especially the rw225 between

BSS and the index for the MJO simulation (Fig. 10b).

Results from Fig. 10 suggest that the ATL BSS from

weeks 2 to 5 is a consequence of the models’ represen-

tation of the MJO–TC relationship more than it is a

consequence of the relationship between the TC cli-

matology and the MJO. The rw225 from BSS and the

index for the MJO–TC relationship is above the 90%

significance level.

Similar analyses are conducted for other basins, and

there is no consistent dependence of BSS on the three

indices examined (Fig. 11). In the SIN and NI, the BSS

values are positively correlated to the models’ perfor-

mance in simulating the MJO. The BSSs in AUS and

WNP are positively correlated to all three verification

indices. The correlation with TC climatology and the

MJO–TC relationship is equally strong in the WNP

while the correlation with TC climatology is strongest in

the ENP. The rw225 between BSS and the verification

indices for the climatology and the MJO–TC relation-

ship in the WNP and ENP are both above the 90%

significance level. It is noted that the correlation does

not necessary represent causality. Furthermore, BSS

and the three verification indices are not independent of

each other, even for those that are above the 90% sig-

nificance level. Results from Fig. 11 merely show their

dependency. There might exist causality or both quan-

tities might be affected by some factors that are not

discussed here.

b. BSS and initial MJO magnitude

Belanger et al. (2010) found that the subseasonal At-

lantic hurricane prediction in the ECMWF model de-

pends on the MJO magnitude at the time of model

initialization. Following their work, we bin the reforecasts
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by MJO magnitude at the initial time. Our results for

the ECMWFmodel in the ATL (grayish lines in Fig. 9)

are consistent with those of Belanger et al. (2010);

higher BSSs with increasing MJO magnitude. We, how-

ever, do not find such a relationship in other basins.

There is no consistent dependence between BSS and the

initial MJO magnitude across basins for the BoM and

NCEP models (Fig. 9) nor for other S2S models (not

shown) either.

c. BSS and ensemble size

Next, we consider the impact of the ensemble size on

the forecast skill of subseasonal TC predictions. In

particular, we are interested in exploring whether the

low skill scores of the NCEP model are due to its small

ensemble size (four members) in the S2S reforecasts.

(In the climatology and candy plot analyses, the NCEP

system’s performance is as good as those of the BoM,

and MetFr models, but its skill scores are negative after

week 1.) To examine this question, we first reduce the

number of ensemble members for all S2S models to four

in the BSS calculation. We focus our analysis in the

BoM, ECMWF, and MetFr models at weeks 2 and 5, as

the CMA and JMA models only have four and five

ensemble members, respectively. As expected, the

ECMWF, BoM, and MetFr BSS values drop to below

zero when only four ensemble members are used in the

calculation (Fig. 12). The ECMWF system is still more

skillful than NCEP with four ensemble members, as is

the BoM model in the basins, where it is skillful with all

33 ensemble members.

We further calculate the BSS values with increasing

ensemble size and find that the BoM model reaches a

saturation point with roughly 15 ensemble members;

that is, further increases in the ensemble size do not

benefit the genesis prediction skill. The ECMWF and

MetFr models, with 11 and 15 ensemble members,

respectively, seem to be close to their saturation

points as well, although their BSS values are not flat

yet. In other words, the forecast strategy of the

FIG. 10. Basin-wide BSSs (from Fig. 8) as a function of verification indices for (a) the genesis climatology, (b) the

MJO, and (c) theMJO–TC relationship fromweeks 1 to 5 (colors) in all six S2Smodels (symbols). The three indices

are the correlation of the basin-wide genesis frequency between simulations and the observations, the bivariate

correlation of RMM, and r2 from the candy plot analysis (Fig. 6). The solid cyan lines show the best-fit line and the

correlation coefficient between BSS and the indices with data from all leads (rw125), while the dashed gray lines are

for data from weeks 2 to 5 (rw225).

AUGUST 2018 LEE ET AL . 983

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/01/21 09:13 PM UTC



ECMWF and MetFr is probably more efficient than

that chosen by BoM. Thus, we can expect that the

NCEP, JMA, and CMA models will have better skill

scores using larger ensemble sizes. This is particularly

true in the case of the NCEP model, as the JMA and

CMA models have larger biases in their simulated TC

genesis climatologies.

7. Summary

The subseasonal prediction skill of TC genesis fore-

casts, at the basin level, is examined in this study using

reforecasts from six different ensemble prediction sys-

tems. Skill scores are calculated for deterministic and

probabilistic predictions. We compute the potential

predictability as well. Most forecasts are skillful for

week 1 (days 1–7), the period when initialization is im-

portant. The prediction skill drops significantly for

weeks 2–5, when the models’ performance is associated

with the models’ ability to simulate TC genesis clima-

tology, the MJO, and the interaction between the MJO

and TCs.

Deterministically, the S2S models are skillful at pre-

dicting basin-wide TC occurrence at all lead times (from

weeks 1 to 5), but not skillful at predicting the genesis

frequency. From weeks 2 to 5, the Brier skill scores

(BSSs) of the probabilistic predictions from all models in

the ATL, WNP, and ENP are found to be positively

related to how well the global MJO–TC relationship is

captured by the model. The BSS is positively related to

the models’ performance in simulating the MJO in the

ATL, SIN, NI, AUS, WNP, and ENP, and to the

accuracy of the simulated TC climatology in the ATL,

AUS, WNP, and ENP.

Among the six models, the ECMWF model delivers

the best performance in reproducing the observed

genesis TC climatology and is skillful in forecasting TC

genesis up to week 5 in the ATL and WNP, week 2 in

the SPC and ENP, and week 1 for the SIN, NI, and

AUS. The BoM system has positive skill up to week 4

in theWNP, week 2 in the SPC andAUS, and week 1 in

the ATL and SIN. The MetFr model has skill in the

WNP up to week 2, and week 1 in the other basins,

except the NI. The CMA, JMA, and NCEP models

show no skill in predicting TC genesis from weeks 2 to

5. Among the TC basins, subseasonal TC predictions

in the Indian Ocean and southern oceans show the

least skill, as most of the S2S models have less skill

than the monthly climatological probabilities after

week 1. In contrast, more S2S models have positive

skill in the North Atlantic and North Pacific basins

after week 1.

From weeks 2 to 5, the BSSs in all basins are either

close to zero (having little skill compared to the cli-

matological forecast) or below zero (having no skill),

indicating the difficulty of subseasonal-scale prediction

with the current generation of models. The comparison

between actual and potential skill suggests that the

S2S models may not have yet reached their limits in

predicting TC occurrence in all basins, though some

models are close to that mark in some basins. The

values of the BSSs are close to their respective potential

skill levels in the ECMWFmodel in the ATL and in the

three Southern Hemisphere TC basins in the BoM. The

BSSs in NCEP and CMA are most distant from

their potential values, though this might be due to their

low actual skill as well as the insufficient number of

ensemble members, which can result in artificially high

potential skill.

While current skill scores are still low, the forecasts

are produced directly without any bias correction. As

noted by Vitart et al. (2010), the skill of a model can be

extended by a few weeks by bias correction through

postprocessing techniques based on the past hindcast

performance. Furthermore, one can use derived pa-

rameters, such as the genesis potential index, rather

than the direct output from TC detection, which might

have useful results. Even with no bias correction, the

most skillful models (ECMWF and BoM) have com-

parable (or slightly higher) skill to the existing regional

statistical models at weeks 1 and 2. It is noted that our

results may not reflect the maximum potential skill of

some models, such as CMA, JMA, and NCEP, since

their S2S reforecast ensembles are small (four or five

members).

FIG. 11. The rw225 from Fig. 10, but for all global TC basins. Light

blue bars show genesis climatology, green bars show the MJO, and

the dark blue bars show the TC–MJO relationships. The correla-

tions coefficients above the 90% significance level are marked

with stars.
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FIG. 12. Basin-wide BSSs at weeks 2 and 5 as a function of ensemble size in BoM, ECMWF, and MetFr.

The blue star and circle indicate the BSSs from the NCEPmodel (four ensemble members) at weeks 2 and

5, respectively.
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